В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров
Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Метод ветвей и границ

Метод ветвей и границ

Метод ветвей и границ. Рассмотрим задачу, состоящую в определении максимального значения функции

при условиях

Как и при решении сформулированной задачи методом Гомори, первоначально находим симплексным методом искусственного базиса оптимальный план задачи без учета целочисленности переменных. Пусть им является план X0. Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение задачи и .

Если же компонент плана Х0 имеются дробные числа, то Х0 не удовлетворяет условию целочисленности и необходимо осуществить упорядоченный переход к новым планам, пока не будет найдено решение задачи. Покажем, как это можно сделать, предварительно отметив, что для всякого последующего плана Х.

Предполагая, что найденный оптимальный план Х0 не удовлетворяет условию целочисленности переменных, тем самым считаем, что среди его компонент есть дробные числа. Пусть например переменная приняла в плане Х0 дробное значение. Тогда в оптимальном целочисленном плане её значение будет по крайней мере либо больше, либо меньше или равно ближайшему меньшему целому числу , либо больше или равно ближайшему большему целому числу . Определяя эти числа, находим симплексным методом решение двух задач линейного программирования:

Найдем рассмотренными выше методами решение задач линейного программирования (I) и (II). Очевидно, здесь возможен один из следующих 4:

1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нём и дают решение исходной задачи.

2. Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи, аналогичные задачам (I) и (II).

3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане второй задачи есть дробные числа. Тогда вычисляем значение целевой функции на этих планах и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше, или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и он вместе со значением целевой функции на нем дает искомое решение.

Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, необходимо построить две задачи, аналогичные (I) и (II).

4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда выделяем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и строим две задачи, аналогичные (I) и (II).

Таким образом, описанный выше интеграционный процесс может быть представлен в виде некоторого дерева, на котором исходная вершина отвечает оптимальному плану Х0 задачи (32)-(34), а каждая соединенная с ней ветвью вершина отвечает оптимальным планам задач (I) и (II). Каждая из этих вершин имеет свои ветвления. При этом на каждом шаге выбирается та вершина, для которой значение является наибольшим. Если на некотором шаге будет получен план, имеющий целочисленные компоненты, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.

Итак, процесс нахождения решения задачи целочисленного программирования (32)-(35) методом ветвей и границ включает следующие этапы:

10 Находят решение задачи линейного программирования (32)-(34)

20 Составляют дополнительные ограничения для одной из переменных, значение которой в оптимальном плане задачи (32)-(34) является дробным числом.

30 Находят решения задач (I) и (II), которые получаются из задачи (32)-(34) в результате присоединения дополнительных ограничений.

40 В случае необходимости составляют дополнительные ограничения для переменной, значение которой является дробным, формулируют задачи, аналогичные задачам (I) и (II), и находят их решение. Интеграционный процесс продолжают до тех пор, пока не будет найдена вершина, соответствующая целочисленному плану задачи (32)-(34) и такая, что значение в этой вершине больше или равно значению функции в других возможных для ветвления вершинах.

Описанный выше метод ветвей и границ имеет более простую логическую схему расчетов, чем рассмотренный выше метод Гомори. Поэтому в большинстве случаев для нахождения решения конкретных задач целочисленного программирования с использованием ЭВМ применяется именно этот метод. В частности в рассмотренном выше ППП «Линейное программирование в АСУ» для отыскания целочисленного решения конкретных задач используется метод ветвления и границ.

2.51 Методом ветвей и границ найти решение задачи, состоящей в определении максимального значения функции

при условиях

xj – целые (j=)

Р е ш е н и е. Находим решение сформулированной задачи симплексным методом без учета условия целочисленности переменных. В результате устанавливаем, что такая задача имеет оптимальный план Х0= (18/5, 3/5, 0, 0, 24/5). При этом плане F= (X0)=39/5.

Так как в плане Х0 значения трех переменных являются дробными числами, то Х0 не удовлетворяет условию целочисленности, и следовательно, не является оптимальным планом исходной задачи.

Возьмем какую-нибудь переменную, значение которой является дробным числом, например х1. Тогда эта переменная в оптимальном плане исходной задачи будет принимать значение, либо меньшее или равное трём:, либо больше или равно четырём: .

Рассмотрим две задачи линейного программирования:

(I) (II)

Задача (I) имеет оптимальный план на котором значение целевой функции . Задача (II) неразрешима.

Исследуем задачу (I). Так как среди компонент оптимального плана этой задачи есть дробные числа, то для одной из переменных, например x2, вводим дополнительные ограничения:

Рассмотрим теперь следующие две задачи:

(III)

(IV)

Задача (IV) неразрешима, а задача (III) имеет оптимальный план (3, 1, 3, 3, 3), на котором значение целевой функции задачи

[1] 2 3 4

скачать реферат скачать реферат

Новинки
Интересные новости


Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2019 textreferat.com