В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров

Новости
Загрузка...
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Имитационное моделирование

Имитационное моделирование

План:

Введение

1. Определение понятия «имитационное моделирование»

2. Имитационное моделирование воспроизводственных процессов в нефтегазовой промышленности

3. Метод Монте-Карло как разновидность имитационного моделирования

4. Пример. Оценка геологических запасов

Заключение

Введение.

В исследовании операций широко применяются как аналитические, так и статистические модели. Каждый из этих типов имеет свои преимущества и недостатки. Аналитические модели более грубы, учитывают меньшее число факторов, всегда требуют каких-то допущений и упрощений. Зато результаты расчета по ним легче обозримы, отчетливее отражают присущие явлению основные закономерности. А, главное, аналитические модели больше приспособлены для поиска оптимальных решений. Статистические модели, по сравнению, с аналитическими, более точны и подробны, не требуют столь грубых допущений, позволяют учесть большое (в теории – неограниченно большое) число факторов. Но и у них – свои недостатки: громоздкость, плохая обозримость, большой расход машинного времени, а главное, крайняя трудность поиска оптимальных решений, которые приходятся искать «на ощупь», путем догадок и проб.

Наилучшие работы в области исследования операций основаны на совместном применении аналитических и статистических моделей. Аналитическая модель дает возможность в общих чертах разобраться в явлении, наметить как бы контур основных закономерностей. Любые уточнения могут быть получены с помощью статистических моделей.

Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения, подобно тому, как шахматист, глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время . Следующее «текущее решение» принимается уже с учетом реальной новой обстановки и т.д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучивается принимать правильные решения – если не оптимальные, то почти оптимальные.

Определение понятия «имитационное моделирование».

В современной литературе не существует единой точки зрения по вопросу о том, что понимать под имитационным моделированием. Так существуют различные трактовки:

- в первой – под имитационной моделью понимается математическая модель в классическом смысле;

- во второй – этот термин сохраняется лишь за теми моделями, в которых тем или иным способом разыгрываются (имитируются) случайные воздействия;

- в третьей – предполагают, что имитационная модель отличается от обычной математической более детальным описанием , но критерий, по которому можно сказать, когда кончается математическая модель и начинается имитационная , не вводится;

Имитационное моделированием применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или иные решения, подобно тому, как шахматист глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки, в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее текущее решение принимается уже с учетом реальной новой обстановки и т. д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучиваться принимать правильные решения – если не оптимальные, то почти оптимальные.

Попробуем проиллюстрировать процесс имитационного моделирования через сравнение с классической математической моделью.

Этапы процесса построения математической модели сложной системы:

1. Формулируются основные вопросы о поведении системы, ответы на которые мы хотим получить с помощью модели.

2. Из множества законов, управляющих поведением системы, выбираются те, влияние которых существенно при поиске ответов на поставленные вопросы.

3. В пополнение к этим законам, если необходимо, для системы в целом или отдельных ее частей формулируются определенные гипотезы о функционировании.

Критерием адекватности модели служит практика.

Трудности при построении математической модели сложной системы:

- Если модель содержит много связей между элементами, разнообразные нелинейные ограничения, большое число параметров и т. д.

- Реальные системы зачастую подвержены влиянию случайных различных факторов, учет которых аналитическим путем представляет весьма большие трудности, зачастую непреодолимые при большом их числе;

- Возможность сопоставления модели и оригинала при таком подходе имеется лишь в начале.

Эти трудности и обуславливают применение имитационного моделирования.

Оно реализуется по следующим этапам:

1. Как и ранее, формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотим получить.

2. Осуществляется декомпозиция системы на более простые части-блоки.

3. Формулируются законы и «правдоподобные» гипотезы относительно поведения как системы в целом, так и отдельных ее частей.

4. В зависимости от поставленных перед исследователем вопросов вводится так называемое системное время, моделирующее ход времени в реальной системе.

5. Формализованным образом задаются необходимые феноменологические свойства системы и отдельных ее частей.

6. Случайным параметрам, фигурирующим в модели, сопоставляются некоторые их реализации, сохраняющиеся постоянными в течение одного или нескольких тактов системного времени. Далее отыскиваются новые реализации.

Имитационное моделирование воспроизводственных процессов в нефтегазовой промыш­ленности.

Современный этап развития нефтяной и газовой промышленности характеризуется ус­ложнением связей и взаимодействия природных, экономических, организационных, экологиче­ских и прочих факторов производства как на уровне отдельных предприятий и нефтегазодобывающих районов, так и на общеотраслевом уровне. В нефтегазовой промышленности производ­ство отличается длительными сроками, эшелонированием производственно - технологического процесса во времени (поиски и разведка, разработка и обустройство, добыча нефти, газа и кон­денсата), наличием лаговых смещений и запаздываний, динамичностью используемых ресурсов и другими факторами, значения многих из которых носят вероятностный характер.

Значения этих факторов систематически изменяются вследствие ввода в эксплуатацию но­вых месторождений, а также не подтверждения ожидаемых результатов по находящимся в раз­работке. Это вынуждает предприятия нефтегазовой промышленности периодически пересмат­ривать планы воспроизводства основных фондов и перераспределять ресурсы с целью оптими­зации результатов производственно - хозяйственной деятельности. При составлении планов существенную помощь лицам, готовящим проект хозяйственного решения, может оказать ис­пользование методов математического моделирования, в том числе имитационных. Суть этих методов заключается в многократном воспроизводстве вариантов плановых решений с после­дующим анализом и выбором наиболее рационального из них по установленной системе крите­риев. С помощью имитационной модели можно создать единую структурную схему, интегри­рующую функциональные элементы управления (стратегическое, тактическое и оперативное планирование) по основным производственным процессам отрасли (поиски, разведка, разра­ботка, добыча, транспорт, нефтегазопереработка).

Метод Монте-Карло как разновидность имитационного моделирования.

Датой рож­дения метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «The Monte Carlo method». Создателями этого метода считают амери­канских математиков Дж. Неймана и С. Улама. В СССР первые статьи о методе Монте-Карло были опублико­ваны в 1955—1956гг.

[1] 2 3 4

скачать реферат скачать реферат

Новинки
Интересные новости
загрузка...

Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2017 textreferat.com