В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров
Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Билеты по Курсу физики для гуманитариев СПБГУАП

Страница 9

14. Внутр. эн-я системы. З-н сохр-я энергии. Мы рассмотрели взаимопревращение кин. и пот. энергий в поле консервативных сил. Что происходит, if действуют неконсервативные силы. Мы знаем, что, if телу сообщит скорость (сообщить кинетическую энергию)и пустить двигаться, например, по пов-ти земли, оно остановиться за счет сил трения. Его потенциальная эн-я не изменится, а кинетическая станет =ой нулю, когда оно остановиться. Для ответа на вопр, во что перешла кинетическая эн-я, необходимо ввести еще 1 вид энергии- внутреннюю энергию. Определим внутреннюю энергию Евн как сумму кинетических и потенциальных энергий частиц (атомов), составляющих тело: Евн=S((Е^i)пот+(Е^i)кин) (11.13) Здесь N -число частиц, i -номер частицы. Параметром, характеризующим внутреннюю энергию явл. температура тела Т0К, выраженная в градусах Кельвина. Чем больше температура тела, тем с большей скор-тью двигаются атомы и тем самым больше внутренняя эн-я. Численно внутренняя эн-я =а: Евн=(М/'мю')C Т^0 (11.14) М - маса тела, ??????молярная маса (численно равная атомному или молекулярному весу составляющих атомов),С -теплоемкость, равная энергии, кот. нужно передать 1му килограмму-молю, чтобы нагреть его на 1 градус Цельсия или Кельвина. Изменение внут. энергии при переходе системы из состояния 1 в сост. 2 пропорционально изменению температуры тела: Евн(2)-Евн(1) = 'дельта'U = (M/m)C 'дельта T^0. Сумму кин., пот. и внут. энергий системы принято называть полной энергией Е. В рассмотренном нами примере с останавливающемся телом кинетическая эн-я тела переходит во внутреннюю энергию, т.е. идет на нагревание системы. С учетом вышесказанного мы можем сформулировать з-н сохранения полной энергии системы: Полная эн-я изолированной системы остается пост Мы теперь не конкретизируем, какие силы (консервативные или неконсервативные) действуют в этой сист-е. Работа в сист-е, совершаемая за счет пот. энергии, может переходить и в кинетическую энергию системы, и во внутреннюю энергию. При увеличении внут. энергии сист. нагревается.

12.1 Постулаты Т. отнсит-ти. К концу прошлого в. Д.К.Максвеллом (1831-1879) были сформулированы осн. законы электричества и магнетизма в виде системы дифференциальных уравнений, кот. описывали постоянные и переменные электрические и магнитные поля. Решения системы уравнений Максвелла описывали всю гамму поведений электромагнитных полей в прост-ве и времени. Из системы уравнений Максвелла следовало, что переменные электрические и магнитные поля могут существовать только в форме единого электромагнитного поля, кот. распространяются в прост-ве после возникновения с пост. скор-тью, =ой скор. света в вакууме - с. На вопр о том, в какой среде распространяется это поле, Т. Максвелла ответа не давала. Ключевым моментом Т. Максвелла являлось то, что уравнения Максвелла были неинвариантны относит. преобр. Галилея. Это означало, что при переходе с помощью преобр. Галилея из 1ой инерц. системы отсч. в друг., уравнения меняли свой вид. Это обозначало, что преобр. Галилея нельзя было применять при описании электрич. и магнитных явлений. Строгое математическое доказательство неинвариантности уравнений Максвелла относит. преобр. Галилея достаточно сложно. Поэтому, проиллюстрируем этот факт на простом и наглядном примере. Для этого потребуется вспомнить, какие силы действуют на движущиеся заряды в электрич. и магнитных полях. Пусть 2 одноименных заряда летят с одинаковой скор-тью в направлении оси (ox), как это показано на рис.12.1. В неподвижной сист-е отсч. заряды будут создавать электрические и магнитные поля, и, след., будут находиться в полях друг друга. Электрическое поле воздействует на заряд силой Кулона, магнитное - силой Лоренца. Напомним формулы для вычисления этих сил для случая, приведенного на рисунке. Fк=1/4Пи'эпсилонт нулевое'*q1q2/l^2; Fa=q2*v*B1, где B1=4*Пи*q1*v/'мю нулевое'*l^2. Здесь B1 - магнитная индукция, создаваемая первым зарядом в точке, где находится 2й. Сила Кулона для одноименных зарядов всегда явл. силой отталкивания, а сила Лоренца в данном случае явл. силой притяжения. Тким обрзом, в неподвижной сист-е отсч. величина силы взаимдейст. =а: F = FK - FЛ. If перейти к сист-е отсч., движущейся вдоль оси (ох) со скор-тью ( вместе с зарядами, то в ней заряды окажутся неподвижными, и сила Лоренца не возникнет. Тким обрзом, силы взаимдейст. зарядов в различн. инерц. сист. отсч. окажутся разными. След. и поведение частиц ,их движение во времени, будет разным в зависим. от того, в какой инерц. сист-е коорд. мы рассматриваем это движение. Есcно, что это абсурд и отсюда сделаем вывод, что к движущимся зарядам, законы движения и взаимдейст. кот. описываются уравнениями Максвелла, нельзя применять принцип отнсит-ти Галилея, т.е. преобр. Галилея. Вторым этапом в становлении специальной Т. отнсит-ти стал опыт А.А.Майкельсона (1852-1931), проведенный в 1881 году. В опыте определялась скорость света в различн. движущихся сист. отсч Уже говорилось, что по Т. Максвелла электромагнитные волны должны распространяться со скор-тью в вакууме - с. Встал вопр, в какой инерц. сист-е отсч. это происходит. If таковой считать систему отсч., связанную с неподвижными звездами, то скорость нашей планеты относит. них ( = 30 км/с. Эта скорость большая и сравнимая со скор-тью света с. Майкельсон экспериментально определял скорость света в разных сист. отсч., а имено, он измерял скорость света, идущего в 2х противоположных относит. Земли напр-ях. В соответствии с преобразованиями Галилея и положениями класич. механики, скор. света в этих сист. отсч. должны были бы отличатся на величину 2v. Результаты эксперимента Майкельсона однозначно показали, что скорость света не зависит от выбора системы отсч. и всегда =а с. Т.е. было установлено, что электромагнитные волны во всех инерц. сист. отсч. распространяются с одинаковой скор-тью с(3(108 м/с. Эксперименты, подобные опыту Майкельсона повторялись неоднократно со все возрастающей точностью. На сегодняшний день можно утверждать, что скорость в различн. сист. отсч. одинакова с точностью порядка нескольких мм/с.

16. Преобразования Лоренца. В 1904-м году голландский физик Х.А.Лоренц (1853-1928) вывел преобр. для перехода из 1ой инерц. системы отсч. в друг., отличные от преобр. Галилея. Сист. уравнений Максвелла была инвариантна относит. этих преобр Преобразования касались и коорд., и времени. Обозначим координаты и время некоторого события (например положения мат. тчки в прост-ве) в инерц. сист-е отсч. К через x, y, z, t, а в другой инерц. сист-е отсч. К' через x',y',z',t'. Системы отсч. выбраны так, чтобы их координатные сетки начальный момент времени t=t'=0 совпадали, а в дальнейшем сист. К' двигалась относит. системы К со скор-тью u вдоль ее оси (ox). Преобразования Лоренца имеют вид: x'=x-ut/'корень'(1-(u/c)^2); y'=y; z'=z; t'=(t-ux/c^2)/'корень'(1-(u/c)^2) (12.1). Сразу можно сказать, что при u/c 'стремится' 0 преобр. Лоренца переходят в преобр. Галилея. Т.е. преобр. Галилея явл. частным случаем преобр. Лоренца при малых скоростях движения. Анализируя сложившееся полож. А.Эйнштейн разработал новую механику больших скоростей, называемую сейчас релятивистской механикой или специальной Т. отнсит-ти. В основе этой Т. лежат 2 постулата. Согласно первому постулату скорость распространения света во всех инерц. сист. коорд. одинакова и =а скор. распространения света в вакууме - с. Этот постулат утверждает эквивалентность инерц. систем отсч. относит. скор. света. 2й постулат закл. в том, что все физические законы и явл-я формулируются и протекают одинаково во всех инерц. сист. отсч., т.е. инвариантны относит. преобр. Лоренца. Базируясь на этих постулатах, Эйнштейн разработал Т. движения систем при любых скоростях, вплоть до скоростей света. В рамках Т. отнсит-ти получены выводы, казалось бы противоречащие законам класич. механики. Однако, все выводы этой Т. подтверждены экспериментально с высокой точностью. Согласно принципу соответствия старая Т. (классическая механика или механика движения тел при малых скоростях) явл. частным случаем новой. И наоборот, новая Т. отнсит-ти переходит в старую классическую механику при скоростях движения v<<c.

1 2 3 4 5 6 7 8 [9] 10

скачать реферат скачать реферат

Новинки
Интересные новости


Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2022 textreferat.com