В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров
Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Билеты по Курсу физики для гуманитариев СПБГУАП

Страница 4

(28) Часто, кроме круговой частоты колебаний 'амега'=2'Пи'/T используют циклическую частоту 'ню'=1/T. Частота измеряется в Герцах, 1 Гц - это 1 колебание в секунду. В общем случае вместо смещения тчки среды из положения равновесия можно ввести люб. "колеблющийся" параметр. Для звуковых волн таким параметром явл. давление газа в даной точке прост-ва. Звуковые волны - продольные волны и физически сводятся к процессу распространения в газе колебаний давления. Эти колебания обычно создают путем колебаний мембраны перпендикулярно ее плоскости. Возникающие перепады давления и представл. собой звуковую волну. Область частот, кот. слышит человеческое ухо лежит в диапазоне 20-20000 Гц. Другим чрезвычайно важным видом волн явл. электромагнитные волны. Электромагнитные волны могут возникать и распространятся в пустом прост-ве, т.е. в вакууме. Из уравнений Максвелла след., что переменное магнитное поле создает вокруг себя в прост-ве переменное электрическое поле. В свою очередь, переменное электрическое поле создает вокруг себя в прост-ве переменное магнитное поле. Этот процес приводит к появлению в прост-ве некоторой волны - электромагнитной волны. Эта волна явл. поперечной. Напряженности электрического и магнитного полей волны перпендикулярны друг другу и направл. распространения волны. На рис.18.5 показаны напряженности электрического и магнитного полей в бегущей волне.Особенностью электромагнитных волн явл. то, что для их распространения не требуется никакой среды. Переменные электромагнитные поля могут распространяться в вакууме. Для количественного описания волн вводят 2 понятия: интенсивность волны и объемную плотность энергии волны. Интенсивность волны - это средняя по времени эн-я, переносимая волнами через единичную пл-дь, параллельную волновому фронту, за единицу времени. Объемная плотность энергии - это эн-я волн, приходящаяся на единицу объема. Волна - это процес распространения колебаний в прост-ве (в упругой среде , как это имеет место для звуковых волн, или в вакууме, как это имеет место для электромагнитных волн). Энергия колебаний опр-ся амплитудой и частотой. Она ~ квадрату амплитуды колебаний. В сист-е СИ интенсивность волны выражается в Вт/м2. Без вывода приведем выражения для интенсивности и скор. звуковой и электромагнитной волн. Для звуковой волны: J = 1/2 * pvA^2w^2 Vii=sqrt(E/p); Vi=sqrt(G/p) где А - амплитуда колебаний среды, 'амега' - частота, (, (//, (( - скорость волны, продольной и поперечной, 'ро' - плотность среды, в кот. распространяется звуковая волна, E - коффициент Юнга, G - коэф. сдвига. Распространение звука в упругой среде связано с объемной деформацией. Поэтому давление в кажд точке среды непрерывно колеблется с частотой 'амега' вокруг некоторого среднего значения. Давление, вызванное звуковой деформацией среды наз. звуковым давлением. Наше ухо воспринимает звуковые давления неодинаково на разных частотах. Область частот ,кот. воспринимает ухо лежит в диапазоне 20 - 20000 Гц. Наибольшей чувствительностью ухо обладает в диапазоне частот около 1000 Гц. На этих частотах ухо способно воспринимать звуки, звуковое давление в кот. отл-ся на 7 порядков. Для интенсивности электромагнитной волны справедливо: J=1/2*EoHo=1/2*sqrt(E*Eo/M*Mo)*Eo^2=1/2*sqrt(M*Mo/E*Eo)*Ho^2; где Eо и Hо амплитуды напряженности электрического и магнитного полей, 'эпсилонт'(E) и 'мю'(M) диэлектрическая и магнитная проницаемости среды, 'эпсилонт'о (Eo) и 'мю'о (Mo) диэлектрическая и магнитная проницаемости вакуума - постоянные, введенные в сист-е СИ. Скорость распространения электромагнитных волн в среде =а V=1/sqrt(EMEoMo);, В вакууме E=M=1, поэтому скорость электромагнитной волны в вакууме будет =а c=1/sqrt(EoMo) = 3*10^8 m/c. Как видно, она расна скор. света в вакууме - с, что не удивительно, поскольку свет явл. электромагнитными волнами.

(29) Основы квантовой механики были заложены в работах конца 19-го, начала 20-го веков. В этих работах вскрывались непримиримые противоречия между принципами и законами класич. физики и накопленными к тому времени экспериментальными фактами. Сначала рассмотрим эксперименты по излучению и поглощению света. В рамках класич. физики и электродинамики Максвелла излучать электромагнитные волны могли лишь заряженные частицы (например электроны), движущиеся с ускорением. If ускорение заряженной частицы изменяется по гармоническому закону с частотой 'амега' (см. формулу (18.3)), то излучать такая частица будет на той же частоте 'амега', т.е. в ее спектре будет присутствовать лишь одна длина волны (или частота). Такие спектры называются линейчатыми. If же ускорение частицы изменяется по любому закону, отличному от (18.3), или не меняется вовсе, то спектры излучение таких частиц будут сплошными или непрерывными, т.е. в них будут присутствовать волны со всеми длинами (или частотами) в некотором диапазоне. На рис.19.1показаны экспериментально наблюдаемые спектры излучения нагретого твердого тела и разреженного газа. На рис.19.1 по горизонтали отложены длины волн, на кот. излучается свет, а по вертикали - относительные интенсивности излучения в условных единицах. If спектр излучения нагретого тела на первый взгляд не противоречит класич. Т. излучения, то спектр излучения разреженных газов не может быть объяснен с позиций класич. электродинамики. Исследование спектра излучения водорода показали, что длины волн излучения подчиняются простой закономерности: 1/lambda=R(1/n1^2-1/n2^2), где R(((10967776(((5(м-1) - постоянная Ридберга, названная в честь шведского физика Ю.Р.Ридберга((1854-1919), имеющая смысл граничной длины волны между сплошным и линейчатым спектром в минус 1ой степени, n1 и n2((( натур. числа, причем n1(((n2. Отметим важный момент. Формула, описывающая спектр излучения водорода содержит набор целых чисел. В квантовой физике имено целые числа играют важную роль при описании поведения микросистем. Попытки получить что-либо подобное с позиций класич. физики были просто бессмысленны. В конце прошлого в. ряд ученых сделали попытки получить формулы, описывающие излучение нагретых твердых тел. Есcно, что в основе всей теори лежали классические представл Рэлею в 1900-ом году и Джинсу в 1904-ом году удалось вывести такую формулу, ее график приведен на рис.19.1 пунктиром. В инфракрасной облти спектра эта зависимость хорошо согласуется с экспериментом, в облти видимого света она расходится с экспериментом очень сильно, а в ультрафиолетовой облти - катастрофически. Вывод формулы Релея-Джинса был проведен в рамках класич. физики безупречно, а результат получился абсурдным, поскольку излучаемая нагретым телом эн-я должна была по этой формуле стремится к бесконечности. Неспособность класич. физики объяснить излучение нагретого тела назвали "ультрафиолетовой катастрофой". Существовали еще друг. эксперименты по фотоэффекту, проведенные в 1888-1890 гг нашим соотечественником А.Г.Столетовым (1839-1896). Идея эксперимента заключалась в след-м: световое излучение направлялось на пластину метала - катод, находящуюся в стеклянной откачанной колбе (рис.19.2). В этой же колбе анод. Между электродами прикладывалось напряжение требуемой полярности. Свет вырывал из кадода электроны, кот. затем попадали на анод. Меняя разность потенциалов между катодом и анодом можно было определить энергию вырванных электронов и исследовать зависимость этой энергии от параметров электромагнитного излучения. Для определения кин. энергии вырванных электронов необходимо было приложить между анодом и катодом отрицательное напряжение U. Когда сумма кин. и пот. энергий электрона оказывалась отрицательной, электрический ток, создаваемый летящими электронами прекращался. mv^2/2-eU<=0, => mv^2/2=eUmin. Тким обрзом, измеряя минимальное задерживающее напряжение между анодом и катодом, можно было найти кинетическую энергию вылетевших электронов. Опыты Столетова показали, что эн-я вырванных из катода электронов линейно связана с частотой падающего света. Из класич. же Т. следовало, что их эн-я должна быть пропорциональной квадрату амплитуды напряженности электрического поля падающей электромагнитной волны или интенсивности этой волны. Тким обрзом, наблюдалось явное расхождение класич. Т. с экспериментом. В основе "классиче ских" теорий теплового излучения и фотоэффекта лежало предположение о непрерывности процеса излучения и поглощения электромагнитных волн, т.е. считалось, что могут поглощаться и испускаться любые порции энергии. Обойти "ультрафиолетовую катастрофу" удалось М.Планку (1858-1947). В 1905 году им был сделан доклад на заседании Берлинской Академии наук, в кот. он предложил правильную формулу, качественно и количественно объясняющую излучение нагретых тел. М.Планк опирался на гипотезу, что свет испускается порциями - квантами с энергией, =ой E=hV где h((((6,6254(((0,0002)(10-34 Дж(с - постоянная Планка, а v - частота электромагнитного излучения. Есcно, что гипотеза Планка противоречила классическим представлениям Т. электромагнитного излучения - электродинамики Максвелла и первоначально принималась как абстрактная гипотеза. Гипотезу Планка развил А.Эйнштейн. Он предположил, что электромагнитное излучение не только испускается, но и поглощается порциями - квантами. В рамках этого предположения Эйнштейн смог легко объяснить опыты по фотоэффекту. Действительно, из з-на сохраненгия энергии след., что поглощенный квант света с энергией E=hv тратится, во-перв., на работу выхода Aв, необходимую для вырывания электрона из метала, и, во-вторых, на сообщение электрону кин. энергии. В предположении, что 1 квант энергии может выбить из металлла только 1 электрон, з-н сохранения энергии записывается: Hv=As+mv^2/2; Это ур-е сегодня наз. уравнением Эйнштейна для фотоэффекта. Из него однозначно след., что эн-я фотоэлектронов связана линейной зависимостью с частотой падающего света. Позднее А.Эйнштейн в рамках этой гипотезы создал квантовую Т. излучения и поглощения света, кот. явл. основой квантовой электродинамики и квантовой электроники.

1 2 3 [4] 5 6 7 8 9 10

скачать реферат скачать реферат

Новинки
Интересные новости


Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2022 textreferat.com