В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров
Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Оптическая обработка информации

Оптическая обработка информации

Вступление

Сенсоризация производственной деятельности, т. е. замена органов чувств человека на датчики, должна рассматриваться в качестве третьей промышленной революции вслед за первыми двумя — машинно-энергетической и информационно-компьютерной. Потребность в датчиках стремительно растет в связи с бурным развитием автоматизированных систем контроля и управления, внедрением новых технологических процессов, переходом к гибким автоматизированным производствам. Помимо высоких метрологических характеристик датчики должны обладать высокой надежностью, долговечностью, стабильностью, малыми габаритами, массой и энергопотреблением, совместимостью с микроэлектронными устройствами обработки информации при низкой трудоемкости изготовления и небольшой стоимости. Этим требованиям в максимальной степени удовлетворяют волоконно-оптические датчики.

Волоконно-оптические датчики

Первые попытки создания датчиков на основе оптических волокон можно отнести к середине 1970-х годов. Публикации о более или менее приемлемых разработках и экспериментальных образцах подобных датчиков появились во второй половине 1970-х годов. Однако считается, что этот тип датчиков сформировался как одно из направлений техники только в начале 1980-х годов. Тогда же появился и термин "волоконно-оптические датчики" (optical fiber sensors). Таким образом, волоконно-оптические датчики — очень молодая область техники.

От электрических измерений к электронным

Конец X IX века можно считать периодом становления метрологии в ее общем виде. К тому времени произошла определенная систематизация в области электротехники на основе теории электромагнетизма и цепей переменного тока. До этого физические величины измерялись главным образом механическими средствами, а сами механические измерения распространены были незначительно. Электрические же измерения ограничивались едва ли не исключительно только электростатическими. Можно сказать, что метрология, развиваясь по мере прогресса электротехники, с конца XIX века стала как бы ее родной сестрой.

Рассмотрим этапы и успехи этого развития. В течение нескольких десятков лет, вплоть до второй мировой войны, получили распространение электроизмерительные приборы, принцип работы которых основан на силах взаимодействия электрического тока и магнитного поля (закон Био — Совара). Тогда же эти приборы внедрялись в быстро развивающуюся промышленность. Особенность периода в том, что наука и техника, причастные к электроизмерительным приборам, становятся ядром метрологии и измерительной индустрии.

После второй мировой войны значительные успехи в развитии электроники привели к громадным переменам в метрологии. В пятидесятых годах появились осциллографы, содержащие от нескольких десятков до сотни и более электронных ламп и обладающие весьма высокими функциональными возможностями, а также целый ряд подобных устройств, которые стали широко применяться в сфере производства и научных исследований. Так наступила эра электронных измерений. Сегодня, по прошествии 30 лет, значительно изменилась элементная база измерительных приборов. От электронных ламп перешли к транзисторам, интегральным схемам (ИС), большим ИС (БИС). Таким образом, и сегодня электроника является основой измерительной техники.

От аналоговых измерений к цифровым

Однако между электронными измерениями, которые производились в 1950-e годы, и электронными измерениями 1980-х годов большая разница. Суть ее заключается в том, что во многие измерительные приборы введена цифровая техника.

Обычно электронный измерительный прибор имеет структуру, подобную изображенной на рис. 1. Здесь датчик в случае измерения электрической величины (электрический ток или напряжение) особой роли не играет, и довольно часто выходным устройством такого измерителя является индикатор. Однако при использовании подобного прибора в какой-либо измерительной системе сплошь и рядом приходится сталкиваться с необходимостью обработки сигнала различными электронными схемами. Внедрение цифровой измерительной техники подразумевает в идеале, что цифровой сигнал поступает непосредственно от чувствительного элемента датчика. Но пока это скорее редкость, чем правило. Чаще же всего этот сигнал имеет аналоговую форму, и для него на входе блока обработки данных установлен аналого-цифровой преобразователь (АЦП). Цифровая же техника используется главным образом в блоке обработки данных и в выходном устройстве (индикаторе) или в одном из них.

Рис. 1. Типовая структура электронного измерителя

Основное преимущество использования цифровой техники в процессе обработки данных — это сравнительно простая реализация операций высокого уровня, которые трудно осуществимы с помощью аналоговых устройств. К таким операциям относятся подавление шумов, усреднение, нелинейная обработка, интегральные преобразования и др. При этом функциональная нагрузка на чувствительный элемент датчика уменьшается и снижаются требования к характеристикам элемента. Кроме того, благодаря цифровой обработке становится возможным измерение весьма малых величин.

Цифризация и волоконно-оптические датчики

Важно отметить, что одним из этапов развития волоконно-оптических датчиков было функциональное расширение операций, выполняемых в блоке обработки данных датчика, путем их цифризации и, что особенно существенно, упрощение операций нелинейного типа. Ведь в волоконно-оптических датчиках линейность выходного сигнала относительно измеряемой физической величины довольно часто неудовлетворительна. Благодаря же цифризации обработки эта проблема теперь частично или полностью решается.

Нечего и говорить, что важный стимул появления волоконно-оптических датчиков — создание самих оптических волокон, о которых будет рассказано ниже, а также взрывообразное развитие оптической электроники и волоконно-оптической техники связи.

Становление оптоэлектроники и появление оптических волокон

Лазеры и становление оптоэлектроники

Рис. 2. Снижение минимальных потерь передачи для различных типов оптических волокон

Оптоэлектроника — это новая область науки и техники, которая появилась на стыке оптики и электроники. Следует заметить, что в развитии радиотехники с самого начала ХХ века постоянно прослеживалась тенденция освоения электромагнитных волн все более высокой частоты. Вытекающее из этого факта предположение, что однажды радиотехника и электроника достигнут оптического диапазона волн, становится все более и более достоверным, начиная с 1950-х годов. Годом возникновения оптоэлектроники можно считать 1955-й, когда Е. Лоебнер (Loеbner Е. Е. Optoelectronic devices and networks//Proc. 1ЕЕЕ. 1955. V. 43. N 12. Р. 1897 — 1906) описал потенциальные параметры различных оптоэлектронных устройств связи, нынче называемых оптронами, т. е. когда были обсуждены основные характеристики соединения оптического и электронного устройств.

С тех пор оптоэлектроника непрерывно развивается, и полагают, что до конца ХХ века она превратится в огромную отрасль науки и техники, соизмеримую с электроникой. Появление в начале 1960-х годов лазеров способствовало ускорению развития оптоэлектроники. Потенциальные характеристики лазеров описаны еще в 1958 г., а уже в 1960 г. был создан самый первый лазер — газовый, на основе смеси гелия и неона. Генерирующие непрерывное излучение при комнатной температуре полупроводниковые лазеры, которые в настоящее время получили наиболее широкое применение, стали выпускаться с 1970 г.

Появление оптических волокон

Важным моментом в развитии оптоэлектроники является создание оптических волокон. Особенно интенсивными исследования стали в конце 1960-x годов, а разработка в 1970 г. американской фирмой "Корнинг" кварцевого волокна с малым затуханием (20 дБ/км) явилась эпохальным событием и послужила стимулом для увеличения темпов исследований и разработок на все 1970-е годы.

[1] 2 3

скачать реферат скачать реферат

Новинки
Интересные новости


Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2019 textreferat.com