В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров

Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Жаростойкие и жаропрочные никелевые сплавы, применяемые в авиационных двигателях, и их термическая обработка

Жаростойкие и жаропрочные никелевые сплавы, применяемые в авиационных двигателях, и их термическая обработка

В авиационных двигателях широкое применение нашли жаростойкие и жаропрочные никелевые сплавы. В качестве жаростойких применяют сплавы ХН60ВТ (ВЖ98, ЭИ868), ХН50ВМТЮБ (ЭП648), ХН68ВМТЮК (ЭП693), ХН56ВМТЮ (ЭП199) и др.

Термическая обработка сплавов в значительной мере определяется выбранной системой легирования. Так, например, сплав ХН60ВТ имеет низкую концентрацию g¢-образующих элементов, поэтому не содержит в своей структуре g¢-фазу, отличается повышенной пластичностью и не требует термической обработки после сварки. Структура сплава состоит из никелевого g-твёрдого раствора, в котором содержится небольшое количество частиц a-W и карбидной фазы Ni3W3C и Cr23C6. однако другие сплавы, у которых повышение жаропрочности обеспечивается путём упрочнения g-твёрдого раствора и выделения дисперсных частиц упрочняющей g¢-фазы (сплавы ХН50ВМТЮБ, ХН68ВМТЮК, ХН56ВМТЮ), подвергаются упрочнению при термической обработке, состоящей из закалки и старения.

Температура закалки выбирается из условия получения однородного твёрдого раствора. Так, например, сплав ХН50ВМТЮБ подвергают закалке на воздухе от температуры 1140°С и последующему старению при температуре 900°С в течение 5 ч, а сплав ХН68ВМТЮК закаливают от температуры 1100°С с последующим старением при температуре 900°С в течение 5 ч. При старении из пересыщенного твёрдого раствора выделяются дисперсные частицы упрочняющей g¢-фазы и сплавы упрочняются.

Наличие g¢-фазы повышает жаропрочность и одновременно сообщает сплавам склонность к образованию горячих трещин при сварке и термической обработке, необходимость в термической обработке деталей после сварки или подварки технологических, а также эксплуатационных дефектов.

Свойства жаропрочных никелевых сплавов для лопаток и дисков газовых турбин определяются термической стабильностью структуры, размерами, формой и количеством упрочняющей g¢-фазы, прочностными характеристиками g-твёрдого раствора, оптимальным соотношением параметров кристаллических решёток g- и g¢-фаз, распределением карбидной фазы и другими факторами. Обычно жаропрочные сплавы упрочняются путём целенаправленного многокомпонентного легирования. Суть многокомпонентного легирования состоит в обеспечении жаропрочности путём совершенствования гетерофазного строения, включающего контролируемое выделение частиц упрочняющей g¢-фазы, обеспечении её термической стабильности, целенаправленном изменении морфологии, параметров кристаллических решёток g- и g¢-фаз, их влияния на дислокационную структуру сплавов, а также на протекание диффузионных процессов.

Основные требования к материалам для лопаток турбин обусловлены самим развитием конструкции двигателей, непрерывным повышением жаропрочности, пластичности, сопротивления термической и малоцикловой усталости, стойкости к воздействию газовой среды. Материалы для лопаток турбин современных двигателей должны обладать высокой сопротивляемостью разрушению при термической и малоцикловой усталости, которая является в настоящее время основным видом разрушения. Опасность разрушения усугубляется поверхностными реакциями, связанными с газовой коррозией, разупрочнением границы зёрен.

Для изготовления лопаток турбин исползуют деформируемые и литейные сплавы. Деформируемые сплавы обладают ограниченными возможностями обеспечения необходимой жаропрочности, поскольку дальнейшее их легирование ведёт к практически полной потере их технологической пластичности при деформации. Ведущее место среди жаропрочных сплавов принадлежит литейным сплавам, новым направленно кристализованным и монокристализованным сплавам, которые широко применяются в современных высокотемпературных двигателях. Совершенствование технологии литья и многокомпонентного легирования обеспечило существенное увеличение рабочей температуры сплавов, причём и направленные и монокристаллические сплавы группы ЖС стали более пластичными. Предельные рабочие температуры нагрева деформируемых сплавов не превышают 1000°С.

Широкое распространение нашли деформируемые сплавы ЭП109, ЭП220, ЖС6КП и литейные ЖС6К, ЖС6У, ЖС6Ф, ВЖЛ12У, ЖС30, ЖС26, ЖС32 и др.

Термическая обработка сплавов состоит из закалки и старения. Закалка производится при температурах 1220-1280°С в течение 3-5 ч. Отливки деталей получают методом точного литья по выплавляемым моделям и закаливают в вакууме. Упрочняющая g¢-фаза выделяется в основном в процессе охлаждения. В процессе старения при температуре 950°С в течение 2 ч происходит дополнительное незначительное выделение частиц g¢-фазы и упрочнение сплавов.

Окончательная структура сплавов состоит из легированного твёрдого раствора на никелевой основе, g¢-фазы и карбидов. Макроструктура сплава ЖС6ФНК содержит поперечных границ зёрен, а сами зёрна обычно ориентированы по длине лопатки в направлении ребра гранецентрированной решётки.

Сплавы обладают высокими механическими свойствами.

Марка материала

Термическая обработка

Механические свойства

sВ900, МПа

s1001000, МПа

s100900, МПа

d, %

ЭП109

Закалка с 1220°С 5 ч и старение при 950°С 2 ч

650

150

270

6

ЖС6КП

Закалка с 1220°С 4 ч и старение при 900°С 16 ч

770

160

270

6

ЖС6У

Закалка с 1230°С 3 ч и старение при 950°С 2 ч

800

165

330

5

ВЖЛ12У

» »

780

150

320

5

ЖС6Ф-НК

» »

850

180

450

12

ЖС26 (ВСНК)

Закалка с 1260°С 4 ч

880

200

410

8

ЖСЗ2 (монокр)

Закалка с 1280°С 4 ч

960

250

475

18

Деформируемые сплавы ЭП109 и ЖС6КП применяются при температурах на металле не более 950°С, а сплавы ЖС6У, ВЖЛ12У и ЖС6ФНК имеют более высокие допустимые значения температур в эксплуатации, соответственно 1000°С для ЖС6У и ВЖЛ12У и до 1050°С для ЖС6ФНК. Отсутствие поперечных границ зёрен, более низкий модуль упругости и более высокая пластичность сообщают сплаву ЖС6ФНК повышенную долговечность при воздействии высоких температур и циклических термомеханических нагрузок. Температурные ограничения применения жаропрочных сплавов с дисперсионным упрочнением обусловлены растворением, быстрой коагуляцией упрочняющей g¢-фазы и падением жаропрочности при перегревах деталей в процессе эксплуатации.

Деформируемые сплавы имеют более мелкозернистую структуру, которая обеспечивает их более высокое сопротивление усталости, тогда как литейные сплавы с равноосной структурой имеют более высокую жаропрочность.

Введение гафния в сплав ЖС6ФНК усиливает карбидную ликвацию, способствует способствует образованию в поверхностном слое карбидов Ме6С, обладающих низкой жаростойкостью и не покрывающихся при диффузионном алитировании. Наличие ванадия и титана в сплаве ЖС26 значительно снижает жаростойкость. Сплав ЖС32 не содержит титана и ванадия, а легирование алюминием, танталом и небольшой концентрацией хрома обеспечивает сплаву высокую жаростойкость.

[1] 2 3

скачать реферат скачать реферат

Новинки
Интересные новости

Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2017 textreferat.com