В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров

Новости
Загрузка...
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Вычисление определённых интегралов по правилу прямоугольников

Вычисление определённых интегралов по правилу прямоугольников

Содержание.

1. Введение. Постановка задачи…… …………………………2стр.

2. Вывод формулы……………………………………………….3стр.

3. Дополнительный член в формуле прямоугольников……….5стр.

4. Примеры……………………………………………………… 7стр.

5. Заключение…………………………………………………… 9стр.

6. Список литературы………………………………………… .10стр.

Постановка задачи.

Задача вычисления интегралов возникает во многих областях прикладной математики. В большинстве случаев встречаются определённые интегралы от функций, первообразные которых не выражаются через элементарные функции. Кроме того, в приложениях приходится иметь дело с определёнными интегралами, сами подынтегральные функции не являются элементарными. Распространенными являются также случаи, когда подынтегральная функция задается графиком или таблицей экспериментально полученных значений. В таких ситуациях используют различные методы численногоинтегрирования, которые основаны на том, что интеграл представляется в виде предела интегральной суммы (суммы площадей), и позволяют определить эту сумму с приемлемой точностью. Пусть требуется вычислить интеграл при условии, что a и b конечны и f(x) является непрерывной функцией на всем интервале (a, b). Значение интеграла I представляет собой площадь, ограниченную кривой f(x),осью x и прямыми x=a, x=b. Вычисление I проводится путем разбиения интервала от a до b на множество меньших интервалов, приближенным нахождением площади каждой полоски, получающейся при таком разбиении, и дальнейшем суммировании площадей этих полосок.

Вывод формулы прямоугольников.

Прежде, чем перейти к формуле прямоугольников, сделаем следующее замечание:

З а м е ч а н и е. Пусть функция f(x) непрерывна на сегменте [a, b], а

- некоторые точки сегмента [a, b]. Тогда на этом сегменте найдётся точка такая, что среднее арифметическое .

В самом деле, обозначим через m и M точные грани функции f(x) на сегменте [a, b]. Тогда для любого номера k справедливы неравенства . Просуммировав эти неравенства по всем номерам и поделив результат на n, получим

Так как непрерывная функция принимает любое промежуточное значение, заключённое между m и M, то на сегменте [a, b] найдётся точка такая, что

.

Первые формулы для приближенного вычисления определённых интегралов проще всего получаются из геометрических соображений. Истолковывая определенный интеграл как площадь некоторой фигуры, ограниченной кривой , мы и ставим перед собой задачу об определении этой площади.

Прежде всего, вторично используя эту мысль, которая привела к самому понятию об определенном интеграле, можно разбить всю фигуру (рис. 1) на полоски, скажем, одной и той же ширины , а затем каждую полоску приближенно заменить прямоугольником, за высоту которого принята какая-либо из ее ординат. Это приводит нас к формуле

(1)

где , а R – дополнительный член. Здесь искомая площадь криволинейной фигуры заменяется площадью некоторой состоящей из прямоугольников ступенчатой фигуры (или – если угодно – определенный интеграл заменяется интегральной суммой). Эта формула и называется формулой прямоугольников.

(рис.1)

На практике обычно берут ; если соответствующую среднюю ординату обозначить через , то формула перепишется в виде

.

Дополнительный член в формуле прямоугольников.

Перейдём к отысканию дополнительного члена в формуле прямоугольников.

Справедливо следующее утверждение:

У т в е р ж д е н и е. Если функция f(x) имеет на сегменте [a, b] непрерывную вторую производную, то на этом сегменте найдётся такая точка

, что дополнительный член R в формуле (1) равен

(2)

Доказательство.

Оценим , считая, что функция f(x) имеет на сегменте [-h, h] непрерывную вторую производную Для этого подвергнем двукратному интегрированию по частям каждый из следующих двух интегралов:

Для первого из этих интегралов получим

Для второго из интегралов аналогично получим

Полусумма полученных для и выражений приводит к следующей формуле:

(3)

Оценим величину , применяя к интегралам и формулу среднего значения и учитывая неотрицательность функций и . Мы получим, что найдутся точка на сегменте [-h, 0] и точка на сегменте

[0 ,h] такие, что

В силу доказанного замечания на сегменте [-h, h] найдётся точка такая, что

Поэтому для полусуммы мы получим следующее выражение:

Подставляя это выражение в равенство (3), получим, что

(4)

где

. (5)

Так как величина представляет собой площадь некоторого прямоугольника с основанием (рис.1), то формулы (4) и (5) доказывают, что ошибка, совершаемая при замене указанной площадью, имеет порядок

[1] 2 3

скачать реферат скачать реферат

Новинки
Интересные новости
загрузка...

Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2017 textreferat.com