В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров
Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Возможности использования элементов теории вероят-ностей и статистики на уроках математики в начальной школе

Страница 9

В эксперименте принимало участие 15 человек. Нету ни одного учащегося, решившего все задачи. Основной успех достигнут при решении задач №№ 1—3. Итак, как видим, результат невысок.

Причины низких результатов:

1. Подобные задачи редко встречались в практике учащихся.

2. Предложенные задачи чаще всего решаются нетрадиционными методами.

3. Учащиеся не знакомы с элементами теории вероятностей.

III.2. Методический (обучающий) эксперимент

Цель эксперимента: познакомить учеников с элементами теории вероятностей, логическим процессами, приемами решения задач, с проведением эксперимента, вычислением вероятности по формуле. Предлагались следующие задания.

1. В ящике имеются 3 черных и 5 белых шаров. Какое наименьшее количество шаров надо взять из ящика (не заглядывая в него) чтобы среди вынутых шаров оказался: а) хотя бы 1 черный; б) хотя бы 1 белый?

2. В ящике имеются 12 одинаковых шаров, отличающихся только цветом: 6 красных, 3 белых, 2 зеленых и 1 черный. Какое наименьшее количество шаров надо взять из ящика наугад, чтобы среди вынутых шаров было не менее двух шаров одного цвета?

Решение. Будем рассуждать следующим образом: вынув один шар, вынимаем следующий. Он может оказаться того же цвета, что и первый. Но возможно, что второй шар иного цвета, третий шар отличается по цвету от двух первых и т. д. Наихудший вариант: 4 первых шара оказались разных цветов. Тогда пятый шар составит одноцветную пару с одним из ранее вынутых.

Ответ: 5 шаров[7].

В методическом эксперименте учащихся познакомились с понятиями теории вероятностей, приемами вычислений по формуле, учились проводить опыты. Приведем несколько из них.

1. Опыты с пятью монетами, которые Буратино получил от Карабаса-Барабаса[8].

Велась таблица, куда заносились предположения детей об исходе опытов и данные опытов. Опыт проводился более 100 раз.

Учащиеся научились проводить эксперимент и заносить данные в таблицу, делать вывод.

2. Эксперимент с двумя белыми и одним черным шаром, где нужно было выяснить, каков может быть результат опыта, если вытаскивать один за другим 2 шара. Исходы опытов зарисовывались.

После знакомства детей с формулой, по которой вычисляется вероятность, были предложены задачи таких типов:

1. В урне 10 одинаковых шаров, из которых 4 красных и 6 голубых. Из урны извлекается 1 шар. Какова вероятность того, что извлеченный шар окажется голубым?

Решение. Событие “извлеченный шар окажется голубым” обозначим буквой A. Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию A. В соответствии с формулой получаем:

.

2. В урне 3 черных и 4 белых шара. Вы вынимаете один из них, кладете обратно, перемешиваете и вынимаете другой. Возможен один из трех исходов: либо оба шара черные, либо оба белые, либо они различных цветов. Каковы вероятности этих событий?

Во время эксперимента дети учились применять формулу, придумывали и свои аналогичные задачи.

III.3. Контрольный эксперимент

Цель: 1. Окончательно проверить, доступны ли первоначальные логические понятия, элементы теории вероятностей, методика решения задач на нахождение вероятности какого-либо события учащимся начальных классов. 2. Проверить умения решать вероятностные задачи после получения некоторых теоретических и практических знаний и умений.

Были предложены задачи:

1. В пакете имеются конфеты трех сортов, не различимые на ощупь. Какое наименьшее число конфет надо взять наугад из пакета, чтобы среди вынутых были хотя бы 2 конфеты одного сорта?

2. Ключи от четырех чемоданов перемешались. Нужно определить, от какого чемодана какой ключ. Сколько для этого надо сделать попыток?

3. В мешочке 3 красных и 3 желтых шарика. Сколько надо вынуть наугад, не глядя в мешочек, шариков, чтобы быть уверенным в том, что:

а) будет 2 желтых шарика;

б) 3 шарика будут разного цвета.

4. В мешочке 3 черных и 4 белых шара. Вы вынимаете один из них, кладете обратно, перемешиваете и вынимаете другой. Найти вероятность того, что вынут черный шар (3/7), вынут белый шар (4/7).

5. Какова вероятность того, что в наудачу выбранном двузначном числе цифры одинаковы? (9/90)

Вывод. Результат контрольного эксперимента освещен в таблице.

Ф. И.

1

2

3

4

5

Всего решено

1

Ахремко Ксения

+

+

+

+

+

5

2

Беленко Юлия

+

+

+

+

+

5

3

Гедич Вадим

+

+

-

-

-

2

4

Грабун Максим

+

+

+

+

+

5

5

Иванов Роман

+

+

+

+

+

5

6

Киселев Кирилл

+

+

-

-

-

2

7

Куровская Ольга

+

+

+

-

-

3

8

Матеюк Андрей

+

-

-

-

-

1

9

Окунь Евгений

+

+

+

+

-

4

10

Панфилов Егор

+

+

-

-

-

2

11

Сидорик Анастасия

+

+

+

+

+

5

12

Сочан Анастасия

+

+

+

+

+

5

13

Тимохин Артем

+

+

+

+

+

5

14

Филипчик Виталий

+

+

+

+

-

4

15

Чищеня Ирина

+

+

-

-

-

2

 

Итого

13

9

8

3

0

55

1 2 3 4 5 6 7 8 [9] 10

скачать реферат скачать реферат

Новинки
Интересные новости


Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2019 textreferat.com