В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров
Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Анализ типичных ошибок при решении задач курса школьной математики: уравнения, тригонометрия, планиметрия

Страница 7

Запишем окончательный ответ: решений нет.

Задача 6.

Решить систему неравенств:

Решение:

Решаем каждое из неравенств системы в отдельности:

1.

2.

3.

Для того, чтобы получить решение системы, возьмем пересечение всех полученных интервалов.

Ответ: .

Задача 7.

Решить уравнение:

Решение:

ОДЗ: .

Приведем дроби к общему знаменателю и отбросим знаменатель:

Но x=1 не входит в ОДЗ, поэтому ответ: решений нет.

Задача 8.

Решить уравнение:

Решение:

ОДЗ: , т.к. знаменатель не должен обращаться в ноль.

Приведем дроби к общему знаменателю и отбросим знаменатель:

Но x=1 не входит в ОДЗ, поэтому ответ: решений нет.

Задача 9.

Решить уравнение: .

Решение:

Рассмотрим 4 возможных случая:

1. . В этом случае получаем уравнение . Это значение удовлетворяет уравнению, поэтому является корнем данного уравнения.

2. . В этом случае получаем уравнение . Решение: .

3. . В этом случае получаем уравнение . Решений нет.

4. - этот случай не возможен.

Объединяя найденные решения, получаем окончательный ответ: .

Задача 10.

Решить уравнение: .

Решение:

Рассмотрим 4 возможных случая:

1. . В этом случае получаем уравнение . Это значение удовлетворяет уравнению, поэтому является корнем данного уравнения.

2. . В этом случае получаем уравнение . Решение: .

3. . В этом случае получаем уравнение . Решений нет.

4. - этот случай не возможен.

Объединяя найденные решения, получаем окончательный ответ: .

Задача 11.

Решить уравнение: .

Решение:

Возможны 2 случая:

1. . Тогда уравнение примет вид: - корень исходного уравнения.

2. . Тогда уравнение примет вид: - корень исходного уравнения.

Ответ: .

Задача 12.

Решить уравнение: .

Решение:

ОДЗ: .

Оставляем корень в левой части уравнения, а все остальные слагаемые переносим в правую: . Затем возводим в квадрат: , причем т.к. , то для корректности возведения в квадрат необходимо, чтобы . Получим уравнение . Найдем его корни:

. Оба корня удовлетворяют ОДЗ, но только один удовлетворяет дополнительному ограничению . Поэтому ответ: .

Задача 13.

Решить уравнение: .

Решение:

ОДЗ: .

Оставляем корень в левой части уравнения, а все остальные слагаемые переносим в правую: . Затем возводим в квадрат: , причем т.к. , то для корректности возведения в квадрат необходимо, чтобы . Получим уравнение . Найдем его корни: . Оба корня удовлетворяют ОДЗ, но только один удовлетворяет дополнительному ограничению . Поэтому ответ: .

Задача 14.

Решить уравнение: .

Решение:

ОДЗ: .

Выделим полный квадрат под первым знаком корня: .

Получим уравнение: .

Рассмотрим 2 случая:

1. . Получим . Возведем обе части уравнения в квадрат с учетом , получим . Найдем корни: . Учитывая ОДЗ и дополнительное ограничение , получаем корень: .

2. x<3. Получим . Возведем обе части уравнения в квадрат с учетом , получим . Найдем корни: . Учитывая ОДЗ и дополнительное ограничение , получаем корень: .

1 2 3 4 5 6 [7] 8 9 10 11

скачать реферат скачать реферат

Новинки
Интересные новости


Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2019 textreferat.com