В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров
Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Алгоритм компактного хранения и решения СЛАУ высокого порядка

Страница 2

Далее к каждой неглавной i-й строке прибавим главную строку, умноженную на соответствующий множитель mi; для этой строки.

В результате получим новую матрицу, все элементы q-го столбца которой, кроме apq, состоят из нулей.

Отбросив этот столбец и главную p-ю получим новую матрицу, число строк и столбцов которой на единицу меньше. Повторяем те же операции с получившейся матрицей, после чего получаем новую матрицу и т.д.

Таким образом, построим последовательность матриц, последняя из которых является двучленной матрицей-строкой (главной строкой). Для определения неизвестных xi объединяем в систему все главные строки, начиная с последней.

Изложенный метод решения системы линейных уравнений с n неизвестными называется методом главных элементов. Необходимое условие его применения состоит том, что определитель матрицы не равен нулю [6,7].

Схема Халецкого.

Пусть система линейных уравнений дана в матричном виде.

Ax=b (7)

Где А - квадратная матрица порядка n, а x,b - векторы столбцы.

Представим матрицу А в виде произведения нижней треугольной матрицы С и верхней треугольной матрицы В с единичной диагональю, т.е.

А=СВ,

Где

,

Причем элементы сij и bij определяются по формулам:

,

Уравнение (7) можно записать в следующем виде:

CBx=b. (9)

Произведение Bx матрицы B на вектор-столбец x является вектором-столбцом, который обозначим через y:

Bx=y. (10)

Тогда уравнение (9) перепишем в виде:

Cy=b. (11)

Здесь элементы сij известны, так как матрица А системы (7) считается уже разложенной на произведение двух треугольных матриц С и В.

Перемножив матрицы в левой части равенства (11), получаем систему уравнений из которой получаем следующие формулы для определения неизвестных:

неизвестные yi удобно вычислять вместе с элементами bij.

После того как все yi определены по формулам (12), подставляем их в уравнение (10).

Так как коэффициенты bij определены (8), то значения неизвестных, начиная с последнего, вычисляем по следующим формулам:

К прямым методам, использующим свойство разреженности А, можно отнести: алгоритм минимальной степени, алгоритм минимального дефицита, древовидное блочное разбиение для асимметричного разложения, методы вложенных или параллельных сечений и др.

Метод Гаусса.

Пусть дана система

Ax = b

где А – матрица размерности m x m.

В предположении, что , первое уравнение системы

,

делим на коэффициент , в результате получаем уравнение

Затем из каждого из остальных уравнений вычитается первое уравнение, умноженное на соответствующий коэффициент . В результате эти уравнения преобразуются к виду

первое неизвестное оказалось исключенным из всех уравнений, кроме первого. Далее в предположении, что , делим второе уравнение на коэффициент и исключаем неизвестное из всех уравнений, начиная со второго и т.д. В результате последовательного исключения неизвестных система уравнений преобразуется в систему уравнений с треугольной матрицей

Совокупность проведенных вычислений называется прямым ходом метода Гаусса.

Из -го уравнения системы (2) определяем , из ()-го уравнения определяем и т.д. до . Совокупность таких вычислений называют обратным ходом метода Гаусса.

Реализация прямого метода Гаусса требует арифметических операций, а обратного - арифметических операций.

1.2 Итерационные методы решения СЛАУ

Метод итераций (метод последовательных приближений).

Приближенные методы решения систем линейных уравнений позволяют получать значения корней системы с заданной точностью в виде предела последовательности некоторых векторов. Процесс построения такой последовательности называется итерационным (повторяющимся).

Эффективность применения приближенных методов зависят от выбора начального вектора и быстроты сходимости процесса.

Рассмотрим метод итераций (метод последовательных приближений). Пусть дана система n линейных уравнений с n неизвестными:

Ах=b, (14)

Предполагая, что диагональные элементы aii 0 (i = 2, ., n), выразим xi через первое уравнение систем x2 - через второе уравнение и т. д. В результате получим систему, эквивалентную системе (14):

Обозначим ; , где i == 1, 2, .,n; j == 1,2, ., n. Тогда система (15) запишется таким образом в матричной форме

Решим систему (16) методом последовательных приближений. За нулевое приближение примем столбец свободных членов. Любое (k+1)-е приближение вычисляют по формуле

Если последовательность приближений x(0), .,x(k) имеет предел , то этот предел является решением системы (15), поскольку в силу свойства предела , т.е. [4,6].

Метод Зейделя.

Метод Зейделя представляет собой модификацию метода последовательных приближений. В методе Зейделя при вычислении (k+1)-го приближения неизвестного xi (i>1) учитываются уже найденные ранее (k+1)-е приближения неизвестных xi-1.

Пусть дана линейная система, приведенная к нормальному виду:

(17)

Выбираем произвольно начальные приближения неизвестных и подставляем в первое уравнение системы (17). Полученное первое приближение подставляем во второе уравнение системы и так далее до последнего уравнения. Аналогично строим вторые, третьи и т.д. итерации.

Таким образом, предполагая, что k-е приближения известны, методом Зейделя строим (k+1)-е приближение по следующим формулам:

где k=0,1, .,n

Метод Ланцоша.

Для решения СЛАУ высокого порядка (1), матрица, коэффициентов которой хранится в компактном нижеописанном виде, наиболее удобным итерационным методом является метод Ланцоша [4], схема которого имеет вид:

1 [2] 3 4 5 6 7

скачать реферат скачать реферат

Новинки
Интересные новости


Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2019 textreferat.com