В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров
Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Алгебраические числа

Страница 3

Пример:

1) и алгебраические числа 2-й степени, а - алгебраическое число 4 степени. Действительно, если a=, то a2=5+, 24-10a2+1=0, т.е. a корень многочлена f(x)=x4-10x2+1 с целыми коэффициентами, и f(x)=(x-)(x-)(x+)(x+) (4)

Из теоремы единственности над полем рациональных чисел множители f(x) должны являться произведением каких-то множителей правой части равенства (4). Легко видеть, что из этих множителей нельзя составить многочлен с рациональными коэффициентами степени меньшей, чем 4, т.е. f(x) – неприводимый над полем рациональных чисел многочлен, а, следовательно, согласно теореме 3, - алгебраическое число 4-й степени.

2) a= и b=, как легко видеть, это алгебраические числа 6-й степени, а произведение ab= - алгебраическое число 3-й степени.

III. Рациональные приближения

алгебраических чисел.

3.1. Теорема Лиувилля.

Алгебраические числа не могут иметь слишком хороших рациональных приближений: погрешность при замене алгебраического числа рациональной дробью не может быть достаточно мала по порядку в сравнении с величиной, обратной знаменателю рациональной дроби.

Для алгебраического числа 1-й степени существует постоянная c>0, такая, что для любой рациональной дроби , отличной от a, будет выполняться неравенство:

(5)

Для алгебраического числа 2-й степени можно подобрать c>0, такое, что для любой рациональной дроби, будет иметь место неравенство:

(6)

В 1844 г., французским математиком Лиувиллем, впервые была доказана общая теорема:

Теорема 5: Для любого действительного алгебраического числа a степени n можно подобрать положительноеc, зависящее только от a, такое, что для всех рациональных чисел (¹a) будет иметь место неравенство:

(7)

Доказательство:

Пусть f(x)=A0xn+ A1xn-1+An неприводимый многочлен с целыми коэффициентами, корнем которого является a. В качестве f(x) можно, например, взять многочлен, получающийся из минимального для a многочлена после умножения всех коэффициентов на наименьшее кратное их знаменателей.

Согласно теореме Безу, имеем:

f(x)=(x-a)g(x), (8)

где g(x) – многочлен с действительными коэффициентами.

Возьмем произвольное d>0. |g(x)| - непрерывная, а следовательно, ограниченная функция от x в сегменте [a-d; a+d], т.е. существует положительное число M, такое, что |g(x)|£M, для всех x из этого сегмента. Обозначим через c=min , так, что и .

Для произвольного рационального числа могут представиться две возможности:

1) лежит вне сегмента |a-dm; a+dm|, тогда

2) удовлетворяет неравенствам:

a-d££a+d, тогда |g()|£M и, подставляя в (8) вместо x значение , получаем:

(9)

Неприводимый над полем рациональных чисел многочлен f(x) степени n³2 не имеет рациональных корней, а при n=1 не имеет корней, отличных от a, так что:

f()=

Поскольку числитель - целое неотрицательное, отличное от нуля, т.е. число большее или равное 1, то (10). Сравнивая неравенства (9) и (10) получаем , так что и в этом случае имеем: . Теорема доказана.

Пример:

Пусть z – неквадратное целое число. Найти c>0, такое, что для всех рациональных чисел имело бы место неравенство:

.

- корень многочлена xa-В. Деля x2-D на x-, находим g(x)=x+.

При -d<x<+d имеем , т.е. M=+d. В качестве c берем , при этом выгодней всего взять d так, что d2+d-1=0, т.е. d=.

При таком d получаем , так что при любых целых a и b имеем: .

3.2. Трансцендентные числа Лиувилля.

Числа, являющиеся корнями уравнений с целыми коэффициентами, не исчерпывают все множество действительных чисел, т.е. существуют действительные числа отличные от алгебраических.

Определение 6: Любое неалгебраическое число называется трансцендентным.

Впервые существование трансцендентных чисел доказано Лиувиллем. Доказательство существования трансцендентных чисел у Лаувилля эффективно; на основе следующей теоремы, являющейся непосредственным следствием теоремы 5, строятся конкретные примеры трансцендентных чисел.

Теорема 6: Пусть a – действительное число. Если для любого натурального n³1 и любого действительного c>0 существует хотя бы одна рациональная дробь , такая, что (11), то a – трансцендентное число.

Доказательство:

Если бы a было алгебраическим, то нашлось бы (теорема 5) целое положительное n и действительное c>0 такие, что для любой дроби было бы , а это противоречит тому, что имеет место (11). Предположение, что a алгебраическое число, т.е. трансцендентное число. Теорема доказана.

1 2 [3] 4

скачать реферат скачать реферат

Новинки
Интересные новости


Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2020 textreferat.com