В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров
Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Алгебра Дж. Буля и ее применение в теории и практике информатики

Страница 2

/

y

z = x V y

V

x

y

 

x

схемы, подсоединяя выходы одних элементов к входам других. Если при таких соединениях избегать воз­никновения замкнутых контуров (например, подсоединения выхода элемента на один из его собствен­ных входов), то возникает класс схем, называемых обычно комбина­ционными схемами. Такие схемы находятся в однозначном соответст­вии с формулами булевой алгебры, так что с их помощью может быть выражена любая система булевых функций. Например, схема, изображенная на рис. 2, реа­лизует систему булевых функций

u = x / y / ù z и v = ù (x V y V z).

На практике построение комбинационных схем усложняется, поскольку сигналы при прохождении через вентили ослабляют­ся, искажают свою первоначальную форму, запаздывают. Поэто­му необходимо наряду с логическими элементами включать в схему различного рода согласующие элементы (усилители, фор­мирователи сигналов и др.). Задача этих элементов—сделать схему работоспособной и надежной.

Из сказанного ясно, что можно построить комбинационную схему для решения любого конечного множества задач, решения которых однозначно определяются их условиями (подавае­мыми на вход схемы). В частности, если ограничиться какой-ли­бо фиксированной точностью представления вещественных чисел (разрядностью), то можно в принципе построить комбинацион­ную схему, вычисляющую любую заданную вещественную функ­цию у = f(xi, ., xn) (в двоичных кодах).

На практике, однако, оказывается, что уже схема умножителя (вычисляющая функцию у = X1 • Х2) при разрядности (двоичной) 32 и более оказывается столь сложной, что умножение в совре­менных ЭВМ предпочитают реализовать другим, так называемым алгоритмическим способом, о котором речь пойдет ниже.

В то же время многие, более простые функции, например функции сложения двух чисел, реализуются комбинационными схемами приемлемой сложности. Соответствующая схема носит наименование параллельного сумматора.

Следует заметить, что успехи микроэлектроники делают воз­можным построение все более сложных схем. Если еще в 60-е годы каждый логический элемент собирался из нескольких физи­ческих элементов (транзисторов, диодов, сопротивлений и др.), то уже к началу 80-х годов промышленностью выпускаются так называемые интегральные схемы, содержащие многие сотни и даже тысячи логических вентилей. При этом важно подчеркнуть, что не только сами логические элементы, но и соединения меж­ду ними (т. е. вся схема в целом) изготовляются одновременно в едином технологическом процессе на тонких пластинках хими­чески чистого кремния и других веществ размерами в доли квад­ратного сантиметра. Благодаря этому резко уменьшилась стои­мость изготовления схем и повысилась их надежность.

Обладая возможностью реализовать любые ф и к с и р о в а н н ы е зависимости между входными и выходными сигналами» комбинационные схемы неспособны обучаться, адаптироваться к изменяющимся условиям. На первый взгляд кажется, что такая адаптация обязательно требует структурных изменений в схеме,. т. е. изменения связей между ее элементами, а возможно, и со­става этих элементов. Подобные изменения нетрудно реализовать путем механических переключении. Однако такой путь практи­чески неприемлем из-за резкого ухудшения практически всех параметров схемы (быстродействия, габаритов, надежности и др.).

Существует гораздо более эффективный путь решения ука­занной проблемы, основанный па введении в схему в дополнение к уже перечисленным логическим элементам так называемых элементов памяти. Помимо своих входных и выходных сигналов, элемент памяти характеризуется еще третьим информационным параметром—так называемым состоянием этого элемента. Со­стояние элемента памяти может меняться (но не обязательно) лишь в заданные дискретные моменты времени t1,t2, . под влиянием сигналов, появляющихся на его входах в эти моменты. Наиболее употребительна так называемая синхронная организа­ция работы элементов памяти, при которой моменты их возмож­ных переключении (изменении состояния) следуют друг за дру­гом через один и тот же фиксированный промежуток времени Dt = const, называемый тактом. Эти моменты определяются обычно с помощью импульсов, вырабатываемых специальным тактирующим синхрогенератором. Количество тактовых импуль­сов, выдаваемых им в течение одной секунды, называется так­товой частотой.

В современной электронике употребляются в основном двоич­ные элементы памяти, состояние которых представляет собой бу­леву величину. Иными словами, элемент памяти способен запом­нить всего лишь один бит информации. При необходимости запоминания большего количества информации используется составная память (запоминающее устройство), состоящая из некоторого множества элементов. В реальных условиях это мно­жество, разумеется, всегда конечно, хотя в теоретических исследованиях бывает удобно рассматривать и бесконечную память (по крайней мере потенциально).

В простейшем случае множество элементов памяти организу­ется в так называемый регистр, т. е. в (конечную) линейно упо­рядоченную последовательность элементов, называемых разряда­ми (ячейками) регистра. Разряды нумеруются последовательны­ми натуральными числами 1, 2, ., п. Число п этих разрядов на­зывается длиной регистра.

Состояния в, отдельных разрядов составляют (булев) вектор о, называемый состоянием регистра. Входные и выходные сигна­лы отдельных разрядов рассматриваемого регистра (также пред­полагаемые булевыми) составляют соответственно входной х и выходной у (векторные) сигналы данного регистра.

Заметим еще раз, что в подавляющем большинстве случаев у = а.

Обычная последовательностная схема, называемая также конечным автоматом, составляется из регистра памяти и двух комбинационных схем.

Условность подобного представления заключается прежде всего в том, что в схеме с чисто двоичными сигналами нельзя переключить сигнал и на один из выходов, а на других выходах де иметь ничего (это был бы третий вид сигнала, отличный как от 0, так и от 1). Кроме того, в подавляющем большинстве слу­чаев схемы нецелесообразно строить отдельно одну от Дру­гой, так как при этом, вообще говоря, возрастает общее число используемых логических элементов. Однако эти условности не меняют главного — сделанных оценок для числа различных ком­бинационных схем, реализуемых конечным автоматом. Кроме то­го, при некоторых реализациях двоичных сигналов (например, импульсами различной полярности) в электронных схемах есте­ственным образом реализуется и третий вид сигнала, а именно, отсутствие каких-либо импульсов. В этом случае предложенная интерпретация фактически теряет свою условность и может быть реализована практически.

1 [2] 3

скачать реферат скачать реферат

Новинки
Интересные новости


Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2019 textreferat.com