В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров
Новости
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Анализ методов прогнозирования

Страница 4

Специфическими чертами прогнозной экстраполяции можно назвать методы предварительной обработки числового ряда с целью преобразования его к виду, удобному для прогнозирова­ния, а также анализ логики и физики прогнозируемого процесса, оказывающий существенное влияние как па выбор вида экстра­полирующей функции, так и на определение границ изменения ее параметров.

2.2.1 Предварительная обработка исходной информации в задачах прогнозной экстраполяции

Предварительная обработка исходного числового ряда направ­лена на решение следующих задач (всех или части из них): сни­зить влияние случайной составляющей в исходном числовом ряду, т. е. приблизить его к тренду; представить информацию, содержащуюся в числовом ряду, в таком виде, чтобы существенно снизить трудность математического описания тренда. Основными методами решения этих задач являются процедуры сглаживания и выравнивания статистического ряда.

Процедура сглаживания направлена на минимизацию случай­ных отклонений точек ряда от некоторой гладкой кривой пред­полагаемого тренда процесса. Наиболее распространен способ осреднения уровня по некоторой совокупности окружающих точек, причем эта операция перемещается вдоль ряда точек, в связи с чем обычно называется скользящая средняя. В самом простом варианте сглаживающая функция линейна и сглаживающая груп­па состоит из предыдущей и последующей точек, в более слож­ных — функция нелинейна и использует группу произвольного числа точек.

Сглаживание производится с помощью многочленов, прибли­жающих по методу наименьших квадратов группы опытных точек. Наилучшее сглаживание получается для средних точек группы, поэтому желательно выбирать нечетное количество точек в сглаживаемой группе.

Сглаживание даже в простом линейном варианте является во многих случаях весьма эффективным средством выявления тренда при наложении на эмпирический числовой ряд случайных помех и ошибок измерения. Для рядов со значительной ампли­тудой помехи имеется возможность проводить многократное сгла­живание исходного числового ряда. Число последовательных циклов сглаживания должно выбираться в зависимости от вида исходного ряда, от степени предполагаемой его зашумленности помехой, от цели, которую преследует сглаживание. Надо иметь при этом в виду, что эффективность этой процедуры быстро уменьшается (в большинстве случаев), так что целесообразно повторять ее от одного до трех раз.

Линейное сглаживание является достаточно грубой процеду­рой, выявляющей общий приблизительный вид тренда. Для более точного определения формы сглаженной кривой может применять­ся операция нелинейного сглаживания или взвешенные скользящие средние. В этом случае ординатам точек, входящих в сколь­зящую группу, приписываются различные веса в зависимости от их расстояния от середины интервала сглаживания.

Если сглаживание направлено на первичную обработку число­вого ряда для исключения случайных колебаний и выявления тренда, то выравнивание служит целям более удобного представ­ления исходного ряда, оставляя прежними его значения.

Наиболее общими приемами выравнивания являются логариф­мирование и замена переменных.

В случае если эмпирическая формула предполагается содер­жащей три параметра либо известно, что функция трехпарамет­рическая, иногда удается путем некоторых преобразований иск­лючить один из параметров, а оставшиеся два привести к одной из формул выравнивания.

Можно рассматривать выравнивание не только как метод представления исходных данных, но и как метод непосредствен­ного приближенного определения параметров функции, аппрокси­мирующей исходный числовой ряд. Зачастую именно так и используется этот метод в некоторых экстраполяционных про­гнозах. Отметим, что возможность непосредственного его исполь­зования для определения параметров аппроксимирующей функ­ции определяется главным образом видом исходного числового ряда и степенью наших знаний, нашей уверенности относительно вида функции, описывающей исследуемый процесс.

В том случае, если вид функции нам неизвестен, выравнива­ние следует рассматривать как предварительную процедуру, в процессе которой путем применения различных формул и прие­мов выясняется наиболее подходящий вид функции, описывающей эмпирический ряд.

Одной из разновидностей метода выравнивания является исследование эмпирического ряда с целью выяснения некоторых свойств функции, описывающей его. При этом не обязательно преобразования приводят к линейным формам. Однако результа­ты их подготавливают и облегчают процесс выбора аппроксими­рующей функции в задачах прогностической экстраполяции. В простейшем случае предлагается использовать следующие три типа дифференциальных функций роста:

1) Первая производная, или абсолютная дифференциальная функция роста.

2) Относительный дифференциальный коэффициент, или лога­рифмическая производная,

3) Эластичность функции

2.3 Статистические методы

Прежде чем приступить к анализу статистических методов прогнозирования, рассмотрим некоторые общие понятия и опреде­ления, относящиеся к корреляционным и регрессионным моделям. Две случайные величины являются корреляционно связан­ными, если математическое ожидание одной из них меняется в зави­симости от изменения другой.

Применение корреляционного анализа предполагает выполне­ние следующих предпосылок:

а) Случайные величины y(y1, у2, ., Уn) и x(x1, x2, ., Хn) могут рассматриваться как выборка из двумерной генеральной совокуп­ности с нормальным законом распределения.

б) Ожидаемая величина погрешности и равна нулю

в) Отдельные наблюдения стахостически независимы, т. е. зна­чение данного наблюдения не должно зависеть от значения преды­дущего и последующего наблюдений.

г) Ковариация между ошибкой, связанной с одним значением зависимой переменной у, и ошибкой, связанной с любым другим значением y , равна нулю.

д) Дисперсия ошибки, связанная с одним значением у, равна дисперсии ошибки, связанной с любым другим значением .

е) Ковариация между погрешностью и каждой из независимых переменных равна нулю.

ж) Непосредственная применимость этого метода ограничивается случаями, когда уравнение кривой является линейным относительно своих параметров bo, bi, .,bk Это, однако, не означает, что само уравнение кривой относительно переменных должно быть линей­ным. Если эмпирические уравнения наблюдений не являются линейными, то во многих случаях оказывается возможным при­вести их к линейной форме и уже. после этого применять метод наименьших квадратов.

з) Наблюдения независимых переменных производятся без погрешности.

Перед началом корреляционного анализа необходимо проверить выполнение этих предпосылок.

Связь между случайной и неслучайной величинами называется регрессионной, а метод анализа таких связей — регрессионным анализом. Применение регрессионного анализа предполагает обя­зательное выполнение предпосылок (б-г) корреляцион­ного анализа. Только при выполнении приведенных предпосылок оценки коэффициентов корреляции и регрессии, получаемые с помощью способа наименьших квадратов, будут несмещенными и иметь минимальную дисперсию.

Регрессионный анализ тесно связан с корреляционным. При выполнении предпосылок корреляционного анализа выполняются предпосылки регрессионного анализа. В то же время регрессионный анализ предъявляет менее жесткие требования к исходной инфор­мации.» Так, например, проведение регрессионного анализа воз­можно даже в случае отличия распределения случайной величины от нормального, как это часто бывает для технико-экономических величин. В качестве зависимой переменной в регрессионном ана­лизе используется случайная переменная, а в качестве независи­мой — неслучайная переменная.

По степени комплексности статистические исследования можно разделить на двумерные и многомерные. Первые касаются рассмот­рения парных взаимосвязей между переменными (парные корре­ляции и регрессии) и направлены в прогнозных исследованиях на решение таких задач, как установление количественной меры тес­ноты связи между двумя случайными величинами, установление близости этой связи к линейной, оценки достоверности и точности прогнозов, полученных экстраполяцией регрессионной зависимо­сти. Многомерные методы статистического - анализа направлены в основном на решение задачи системного анализа многомерных стохастических объектов прогнозирования. Целью такого анализа является, как правило, выяснение внутренних взаимосвязей между переменными комплекса, построение многомерных функций связи переменных, выделение минимального числа характеристик, описы­вающих объект с достаточной степенью точности. Одной из основ­ных задач здесь является сокращение размерности описания объ­екта прогнозирования.

1 2 3 [4] 5 6 7 8

скачать реферат скачать реферат

Новинки
Интересные новости


Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2019 textreferat.com