В нашей онлайн базе уже более 10821 рефератов!

Список разделов
Самое популярное
Новое
Поиск
Заказать реферат
Добавить реферат
В избранное
Контакты
Украинские рефераты
Статьи
От партнёров

Новости
Загрузка...
Крупнейшая коллекция рефератов
Предлагаем вам крупнейшую коллекцию из 10821 рефератов!

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Нечеткая логика в системах управления

Нечеткая логика в системах управления

Оглавление

Нечеткая логика в системах управления. 3

Немного теории. 3

Фаззификация (переход к нечеткости) 5

Лингвистические переменные. 6

Функции принадлежности. 6

Разработка нечетких правил. 7

Дефаззификация (устранение нечеткости) 8

Метод центра максимума (СоМ) 9

Метод наибольшего значения (МоМ) 9

Метод центроида (СоА) 9

Описание системы 10

Off-line-оптимизация. 11

On-line-оптимизация. 11

Реализация. 11

Литература. 13

Нечеткая логика в системах управления

В последнее время нечеткая технология завоевывает все больше сторонников среди разработчиков систем управления. Взяв старт в 1965 году из работ профессора Лотфи Заде [1], за прошедшее время нечеткая логика прошла путь от почти антинаучной теории, практически отвергнутой в Европе и США, до банальной ситуации конца девяностых годов, когда в Японии в широком ассортименте появились «нечеткие» бритвы, пылесосы, фотокамеры [4, 10]. Сам термин «fuzzy» так прочно вошел в жизнь, что на многих языках он даже не переводится. В России в качестве примера можно вспомнить рекламу стиральных машин и микроволновых печей фирмы Samsung, обладающих искусственным интеллектом на основе нечеткой логики. Тем не менее, столь масштабный скачок в развитии нечетких систем управления не случаен. Простота и дешевизна их разработки заставляет проектировщиков все чаще прибегать к этой технологии. Бурный рост рынка нечетких систем Рис. 1. Рост затрат на исследования по нечетким системам (млн. долл.).показан на рис. 1. После поистине взрывного старта прикладных нечетких систем в Японии [2, 3, 5, 6] многие разработчики США и Европы наконец-то обратили внимание на эту технологию. Но время было упущено, и мировым лидером в области нечетких систем стала Страна восходящего солнца [7, 8], где к концу 1980-х годов был налажен выпуск специализированных нечетких контроллеров, выполненных по технологии СБИС [9]. В такой ситуации Intel нашла поистине гениальное решение. Имея большое количество разнообразных контроллеров от MCS-51 до MCS-96, которые на протяжении многих лет успешно использовались во многих приложениях, корпорация решила создать средство разработки приложений на базе этих контроллеров, но с использованием технологии нечеткости. Это позволило избежать значительных затрат на конструирование собственных нечетких контроллеров, а система от Intel, получившая название fuzzy TECH, завоевала огромную популярность не только в США и Европе, но и прорвалась на японский рынок.

Немного теории

Нечеткая логика основана на использовании таких оборотов естественного языка, как «далеко», «близко», «холодно», «горячо». Диапазон ее применения очень широк - от бытовых приборов до управления сложными промышленными процессами. Многие современные задачи управления просто не могут быть решены классическими методами из-за очень большой сложности математических моделей, их описывающих. Вместе с тем, чтобы использовать теорию нечеткости на цифровых компьютерах, необходимы математические преобразования, позволяющие перейти от лингвистических переменных к их числовым аналогам в ЭВМ.

Рис. 2.

На рис. 2 показаны области наиболее эффективного применения современных технологий управления. Как видно, классические методы управления хорошо работают при полностью детерминированном объекте управления и детерминированной среде, а для систем с неполной информацией и высокой сложностью объекта управления оптимальными являются нечеткие методы управления. (В правом верхнем углу рисунка приведена еще одна современная технология управления - с применением искусственных нейронных сетей, но мы не станем столь глубоко вдаваться в достижения ученых.)

Вернемся к теории и кратко рассмотрим такие понятия, как «нечеткие правила», «нечеткий вывод» да и сам термин «нечеткое управление».

Классическая логика развивается с древнейших времен. Ее основоположником считается Аристотель. Логика известна нам как строгая и сугубо теоретическая наука, и большинство ученых (кроме разработчиков последнего поколения компьютеров) продолжают придерживаться этого мнения. Вместе с тем классическая или булева логика имеет один существенный недостаток - с ее помощью невозможно описать ассоциативное мышление человека. Классическая логика оперирует только двумя понятиями: ИСТИНА и ЛОЖЬ, и исключая любые промежуточные значения. Аналогично этому булева логика не признает ничего кроме единиц и нулей. Все это хорошо для вычислительных машин, но попробуйте представить весь окружающий вас мир только в черном и белом цвете, вдобавок исключив из языка любые ответы на вопросы, кроме ДА и НЕТ. В такой ситуации вам можно только посочувствовать. Решить эту проблему и призвана нечеткая логика. С термином «лингвистическая переменная» можно связать любую физическую величину, для которой нужно иметь больше значений, чем только ДА и НЕТ. В этом случае вы определяете необходимое число термов и каждому из них ставите в соответствие некоторое значение описываемой физической величины. Для этого значения степень принадлежности физической величины к терму будет равна единице, а для всех остальных значений - в зависимости от выбранной функции принадлежности. Например, можно ввести переменную ВОЗРАСТ и определить для нее термы ЮНОШЕСКИЙ, СРЕДНИЙ и ПРЕКЛОННЫЙ. Обсудив с экспертами значения конкретного возраста для каждого терма, вы с полной уверенностью можете избавиться от жестких ограничений логики Аристотеля.

Получившие наибольшее развитие из всех разработок искусственного интеллекта, экспертные системы завоевали устойчивое признание в качестве систем поддержки принятия решений. Подобные системы способны аккумулировать знания, полученные человеком в различных областях деятельности. Посредством экспертных систем удается решить многие современные задачи, в том числе и задачи управления. Однако большинство систем все еще сильно зависит от классической логики.

Одним из основных методов представления знаний в экспертных системах являются продукционные правила, позволяющие приблизиться к стилю мышления человека. Любое правило продукций состоит из посылок и заключения. Возможно наличие нескольких посылок в правиле, в этом случае они объединяются посредством логических связок И, ИЛИ. Обычно продукционное правило записывается в виде: «ЕСЛИ (посылка) (связка) (посылка)… (посылка) ТО (заключение)».

Главным же недостатком продукционных систем остается то, что для их функционирования требуется наличие полной информации о системе.

Нечеткие системы тоже основаны на правилах продукционного типа, однако в качестве посылки и заключения в правиле используются лингвистические переменные, что позволяет избежать ограничений, присущих классическим продукционным правилам.

Целевая установка процесса управления связывается с выходной переменной нечеткой системы управления, но результат нечеткого логического вывода является нечетким, а физическое исполнительное устройство не способно воспринять такую команду. Необходимы специальные математические методы, позволяющие переходить от нечетких значений величин к вполне определенным. В целом весь процесс нечеткого управления можно разбить на несколько шагов: фаззификация, разработка нечетких правил и дефаззификация.

Рассмотрим подробнее эти шаги на примере поставляемой с пакетом fuzzy TECH модели контейнерного крана. Пусть вам, как маститому крановщику, необходимо перегрузить контейнер с баржи на железнодорожную платформу. Вы управляете мощностью двигателя тележки крана, заставляя ее двигаться быстрее или медленнее. От скорости перемещения тележки, в свою очередь, зависит расстояние до цели и амплитуда колебания контейнера на тросе. Вследствие того, что стратегия управления краном сильно зависит от положения тележки, применение стандартных контроллеров для этой задачи весьма затруднительно. Вместе с тем математическая модель движения груза, состоящая из нескольких дифференциальных уравнений, может быть составлена довольно легко, но для ее решения при различных исходных данных потребуется довольно много времени. К тому же исполняемый код программы будет большим и не поворотливым. Нечеткая система справляется с такой задачей очень быстро - несмотря на то, что вместо сложных дифференциальных уравнений движения груза весь процесс движения описывается терминами естественного языка: «больше», «средне», «немного» и т. п. То есть так, будто вы даете указания своему товарищу, сидящему за рычагами управления.

[1] 2 3 4

скачать реферат скачать реферат

Новинки
Интересные новости
загрузка...

Заказ реферата
Заказать реферат
Счетчики

Rambler's Top100

Ссылки
Все права защищены © 2005-2017 textreferat.com